Metformin ameliorates arsenic trioxide hepatotoxicity via inhibiting mitochondrial complex I

Cell Death Dis. 2017 Nov 2;8(11):e3159. doi: 10.1038/cddis.2017.482.

Abstract

Arsenic trioxide (ATO) is a well-accepted chemotherapy agent in managing promyelocytic leukemia. ATO often causes severe health hazards such as hepatotoxicity, dermatosis, neurotoxicity, nephrotoxicity and cardiotoxicity. The production of reactive oxygen species, (ROS) play a significant role in ATO-induced hepatotoxicity. The oral hypoglycemic drug, metformin, is considered to be a potential novel agent for chemoprevention in the treatment of cancer. Moreover, metformin has also been shown to have hepatoprotective effects. In the present study, we demonstrated that metformin protected normal hepatocytes from ATO-induced apoptotic cell death in vitro and in vivo. Gene expression screening revealed that glucose metabolism might be related to the metformin-induced protective effect on ATO-treated AML12 cells. The metformin-promoted or induced glycolysis was not responsible for the protection of AML12 cells from ATO-induced apoptotic cell death. Instead, metformin increased the intracellular NADH/NAD+ ratio by inhibiting mitochondrial respiratory chain complex I, further decreasing the intracellular ROS induced by ATO. Treatment with low glucose or rotenone, a mitochondrial respiratory chain complex I inhibitor, also protected AML12 cells from ATO-induced apoptotic cell death. We show for the first time that metformin protects the hepatocyte from ATO by regulating the mitochondrial function. With its properties of chemoprevention, chemosensitization and the amelioration of liver damage, metformin has great prospects for clinical application other than type 2 diabetes mellitus (T2DM).

MeSH terms

  • Animals
  • Antineoplastic Agents / therapeutic use
  • Antineoplastic Agents / toxicity*
  • Apoptosis / drug effects
  • Arsenic Trioxide
  • Arsenicals / therapeutic use
  • Cell Line
  • Chemical and Drug Induced Liver Injury / etiology*
  • Electron Transport Complex I / metabolism*
  • Glucose / pharmacology
  • Glycolysis / drug effects
  • Humans
  • Leukemia, Myeloid / drug therapy
  • Leukemia, Myeloid / pathology
  • Male
  • Metformin / pharmacology*
  • Mice
  • NAD / metabolism
  • Oxidative Phosphorylation / drug effects
  • Oxides / therapeutic use
  • Oxides / toxicity*
  • Reactive Oxygen Species / metabolism
  • Rotenone / pharmacology

Substances

  • Antineoplastic Agents
  • Arsenicals
  • Oxides
  • Reactive Oxygen Species
  • Rotenone
  • NAD
  • Metformin
  • Electron Transport Complex I
  • Glucose
  • Arsenic Trioxide