The 30 kb deletion in the APOBEC3 cluster decreases APOBEC3A and APOBEC3B expression and creates a transcriptionally active hybrid gene but does not associate with breast cancer in the European population

Oncotarget. 2017 Jul 19;8(44):76357-76374. doi: 10.18632/oncotarget.19400. eCollection 2017 Sep 29.

Abstract

APOBEC3B, in addition to other members of the APOBEC3 gene family, has recently been intensively studied due to its identification as a gene whose activation in cancer is responsible for a specific pattern of massively occurring somatic mutations. It was recently shown that a common large deletion in the APOBEC3 cluster (the APOBEC3B deletion) may increase the risk of breast cancer. However, conflicting evidence regarding this association was also reported. In the first step of our study, using different approaches, including an in-house designed multiplex ligation-dependent probe amplification assay, we analyzed the structure of the deletion and showed that although the breakpoints are located in highly homologous regions, which may generate recurrent occurrence of similar but not identical deletions, there is no sign of deletion heterogeneity. This knowledge allowed us to distinguish transcripts of all affected genes, including the highly homologous canonical APOBEC3A and APOBEC3B, and the hybrid APOBEC3A/APOBEC3B gene. We unambiguously confirmed the presence of the hybrid transcript and showed that the APOBEC3B deletion negatively correlates with APOBEC3A and APOBEC3B expression and positively correlates with APOBEC3A/APOBEC3B expression, whose mRNA level is >10-fold and >1500-fold lower than the level of APOBEC3A and APOBEC3B, respectively. In the next step, we performed a large-scale association study in three different cohorts (2972 cases and 3682 controls) and showed no association of the deletion with breast cancer, familial breast cancer or ovarian cancer. Further, we conducted a meta-analysis that confirmed the lack of the association of the deletion with breast cancer in non-Asian populations.

Keywords: APOBEC3B; MLPA; copy number variation (CNV); hereditary breast cancer; meta-analysis.