Objective: To discuss the clinical value of immunoglobulin gene rearrangements in the diagnosis of B-cell lymphoma.
Methods: A total of 209 cases of B-cell lymphomas and 35 cases of reactive lymphoid hyperplasia were selected for DNA extraction and PCR amplification using the BIOMED-2 primer system. Gel electrophoresis of heteroduplexes was used to analyze immunoglobulin gene rearrangements.
Results: A total of 209 cases of B-cell lymphoma, including 69 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue, 63 diffuse large B-cell lymphomas, 39 follicular lymphomas, 15 small lymphocytic lymphomas, 6 plasmacytomas, 6 mantle cell lymphomas, 7 nodal marginal zone B-cell lymphomas, and 4 lymphoplasmacytoid lymphomas, were examined. Immunoglobulin gene rearrangements were found in all 209 cases, with 93 IGHA, 122 IGHB, 98 IGHC, 167 IGK, 100 IGL, 167 IGHA/B/C, 204 IGH/IGK, 209 IGH/IGK/IGL, 129 IGH+IGK, 81 IGH+IGL, 83 IGK+IGL and 68 IGH+IGK+IGL gene rearrangements. Immunoglobulin gene rearrangements were not found in the 35 cases of reactive lymphoid hyperplasia. IGH and IGK gene rearrangements were mainly found in mantle cell lymphomas, small lymphocytic lymphomas, extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue and diffuse large B-cell lymphomas. The IGH gene rearrangement was mainly found in lymphoplasmacytoid lymphomas and follicular lymphomas. IGK and IGL gene rearrangements were mainly found in plasmocytoma, and the IGK gene rearrangement was mainly found in nodal marginal zone B-cell lymphomas.
Conclusions: The BIOMED-2 standardized immunoglobulin gene rearrangement detection system is an important tool in B-cell lymphoma diagnosis. Analysis of IGH, IGK and IGL gene rearrangements is valuable in confirming the classification of B-cell NHL.
Keywords: B-cell lymphoma; gene rearrangement; immunoglobulin.