Protein-bound uremic toxins impaired mitochondrial dynamics and functions

Oncotarget. 2017 Sep 8;8(44):77722-77733. doi: 10.18632/oncotarget.20773. eCollection 2017 Sep 29.

Abstract

Protein-bound uremic toxins, indoxyl sulfate and p-cresol sulfate, increase oxidative stress and adversely affect chronic kidney disease progression and cardiovascular complications. In this study, we examined whether mitochondria are the target of indoxyl sulfate and p-cresol sulfate intoxication in vivo and in vitro. The kidneys of 10-week-old male B-6 mice with ½-nephrectomy treated with indoxyl sulfate and p-cresol sulfate were used for the animal study. Cultured human renal tubular cells were used for the in vitro study. Our results indicated that indoxyl sulfate and p-cresol sulfate impaired aerobic and anaerobic metabolism in vivo and in vitro. Indoxyl sulfate and p-cresol sulfate caused mitochondrial fission by modulating the expression of mitochondrial fission-fusion proteins. Mitochondrial dysfunction and impaired biogenesis could be protected by treatment with antioxidants. The in vitro study also demonstrated that indoxyl sulfate and p-cresol sulfate reduced mitochondrial mass by activating autophagic machinery. In summary, our study suggests that mitochondrial injury is one of the major pathological mechanisms for uremic intoxication, which is related to chronic kidney disease and its complications.

Keywords: metabolic stress; mitochondrial fusion; mitochondrial mass; mitophagy; uremic toxins.