Ex Vivo Profiling of PD-1 Blockade Using Organotypic Tumor Spheroids

Cancer Discov. 2018 Feb;8(2):196-215. doi: 10.1158/2159-8290.CD-17-0833. Epub 2017 Nov 3.

Abstract

Ex vivo systems that incorporate features of the tumor microenvironment and model the dynamic response to immune checkpoint blockade (ICB) may facilitate efforts in precision immuno-oncology and the development of effective combination therapies. Here, we demonstrate the ability to interrogate ex vivo response to ICB using murine- and patient-derived organotypic tumor spheroids (MDOTS/PDOTS). MDOTS/PDOTS isolated from mouse and human tumors retain autologous lymphoid and myeloid cell populations and respond to ICB in short-term three-dimensional microfluidic culture. Response and resistance to ICB was recapitulated using MDOTS derived from established immunocompetent mouse tumor models. MDOTS profiling demonstrated that TBK1/IKKε inhibition enhanced response to PD-1 blockade, which effectively predicted tumor response in vivo Systematic profiling of secreted cytokines in PDOTS captured key features associated with response and resistance to PD-1 blockade. Thus, MDOTS/PDOTS profiling represents a novel platform to evaluate ICB using established murine models as well as clinically relevant patient specimens.Significance: Resistance to PD-1 blockade remains a challenge for many patients, and biomarkers to guide treatment are lacking. Here, we demonstrate feasibility of ex vivo profiling of PD-1 blockade to interrogate the tumor immune microenvironment, develop therapeutic combinations, and facilitate precision immuno-oncology efforts. Cancer Discov; 8(2); 196-215. ©2017 AACR.See related commentary by Balko and Sosman, p. 143See related article by Deng et al., p. 216This article is highlighted in the In This Issue feature, p. 127.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Antineoplastic Agents, Immunological / pharmacology*
  • Cell Culture Techniques
  • Cell Line, Tumor
  • Cytokines / metabolism
  • Drug Resistance, Neoplasm
  • Flow Cytometry
  • Humans
  • Immunohistochemistry
  • Immunophenotyping
  • Mice
  • Microfluidic Analytical Techniques
  • Programmed Cell Death 1 Receptor / antagonists & inhibitors*
  • Programmed Cell Death 1 Receptor / metabolism
  • Spheroids, Cellular
  • Time-Lapse Imaging
  • Tumor Cells, Cultured

Substances

  • Antineoplastic Agents, Immunological
  • Cytokines
  • Programmed Cell Death 1 Receptor