Macrophages (Mφs) are involved in a variety of physiological and pathological events including wound healing and tissue regeneration, in which they play both positive and negative roles depending on their polarization state. In this study, we investigated the cellular behaviours of bone marrow mesenchymal stem cells (BMMSCs) after incubation in different conditioned media (CMs) generated by unpolarized Mφs (M0) or polarized Mφs (M1 and M2). Mφ polarization was induced by stimulation with various cytokines, and CMs were obtained from in vitro Mφ cultures termed CM0, CM1 and CM2 based on each Mφ phenotype. We found that CM1 supported the proliferation and adipogenic differentiation of BMMSCs, whereas CM0 had a remarkable effect on cell osteogenic differentiation. To a certain degree, CM2 also facilitated BMMSC osteogenesis; in particular, cells incubated with CM2 exhibited an enhanced capacity to form robust stem cell sheets. Although incubation with CM1 also increased production of extracellular matrix components, such as fibronectin, COL-1 and integrin β1during sheet induction, the sheets generated by CM2-incubated cells were thicker than those generated by CM1-incubated cells (P < 0.001). Our data suggest that each Mφ phenotype has a unique effect on BMMSCs. Fine-tuning Mφ polarization following transplantation may serve as an effective method to modulate the therapeutic potential of BMMSCs.
Keywords: cell culture; cell differentiation; cell sheet engineering; conditioned medium; macrophage polarization; mesenchymal stem cell.
© 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.