The nuclear envelope is a selective barrier against the movement of macromolecules between the nucleus and cytoplasm. Nuclear proteins larger than relative molecular mass 20,000-40,000 are probably actively transported across the envelope through the nuclear pore complex and are directed by specific nuclear location sequences (NLS) in the proteins. NLS mediate the nuclear import of isolated nuclear proteins after microinjection into whole cells and the nuclear accumulation of chimaeric proteins or of non-nuclear proteins conjugated to synthetic peptides. The best-characterized NLS is the simian virus 40 large T-antigen sequence. We have identified two proteins of rat liver by chemical cross-linking that interact with a synthetic peptide containing this sequence: this interaction is specific for a functional NLS, is saturable, and high affinity. The binding proteins are present in a post-mitochondrial supernatant, in nuclei and in a nuclear envelope fraction, which is consistent with a role in the transport of nuclear proteins from the cytoplasm to the nucleus.