Chlorantraniliprole (CAP) is a newly developed insecticide widely used in rice fields in China. There have been few studies regarding its effects on soil microbial functional diversity and bacterial community composition. An 85-day microcosm experiment was performed to reveal the dissipation dynamics of CAP under different application doses in a silty-loam paddy soil in subtropical China. The half-life of CAP was 51.3 and 62.5d for low (1mgkg-1) and high (10mgkg-1) application dose, respectively. We used a combination of community level physiological profile (CLPP) and 16S rRNA gene sequencing analysis to get insights into the soil microbial features responded to CAP during the experiment. Non-metric multidimensional scaling (NMDS) performed on CLPP and the sequence results indicated that the soil microbial functional diversity and bacterial community composition were significantly changed by CAP application at day 14, and recovered to the similar level as no CAP treatment (CK) under low dose of CAP at day 36. However, high dose of CAP imposed longer effect on these soil microbial features, and was still significantly different from CK at day 36. Mcrobial taxa analysis at phylum level showed that high dose of CAP decreased the relative abundance of Nitrospirae at day 14, while increased Bacteroidetes and decreased Actinobacteria, Nitrospirae, and Firmicutes at day 36 in relative to CK. Low dose of CAP only increased Crenarchaeota and decreased Nitrospirae at day 14. The response ratio (RR) analysis was used to quantify significant responses of OTUs to different doses of CAP and found that CAP significantly affected the microbes involving the N transformation. This study provides a basic information to aid in the development of application regulations regarding the safe use of CAP in soil and inspire us to apply CAP at rational dose to minimize its ecotoxicity on soil microbes.
Keywords: 16S rRNA gene sequencing; CLPP; Cap; Dissipation dynamics; Half-life; Response ratio.
Copyright © 2017 Elsevier B.V. All rights reserved.