Role of SDF-1:CXCR4 in Impaired Post-Myocardial Infarction Cardiac Repair in Diabetes

Stem Cells Transl Med. 2018 Jan;7(1):115-124. doi: 10.1002/sctm.17-0172. Epub 2017 Nov 9.

Abstract

Diabetes is a risk factor for worse outcomes following acute myocardial infarction (AMI). In this study, we tested the hypothesis that SDF-1:CXCR4 expression is compromised in post-AMI in diabetes, and that reversal of this defect can reverse the adverse effects of diabetes. Mesenchymal stem cells (MSC) isolated from green fluorescent protein (GFP) transgenic mice (control MSC) were induced to overexpress stromal cell-derived factor-1 (SDF-1). SDF-1 expression in control MSC and SDF-1-overexpressing MSC (SDF-1:MSC) were quantified using enzyme-linked immunosorbent assay (ELISA). AMI was induced on db/db and control mice. Mice were randomly selected to receive infusion of control MSC, SDF-1:MSC, or saline into the border zone after AMI. Serial echocardiography was used to assess cardiac function. SDF-1 and CXCR4 mRNA expression in the infarct zone of db/db mice and control mice were quantified. Compared to control mice, SDF-1 levels were decreased 82%, 91%, and 45% at baseline, 1 day and 3 days post-AMI in db/db mice, respectively. CXCR4 levels are increased 233% at baseline and 54% 5 days post-AMI in db/db mice. Administration of control MSC led to a significant improvement in ejection fraction (EF) in control mice but not in db/db mice 21 days after AMI. In contrast, administration of SDF-1:MSC produced a significant improvement in EF in both control mice and db/db mice 21 days after AMI. The SDF-1:CXCR4 axis is compromised in diabetes, which appears to augment the deleterious consequences of AMI. Over-express of SDF-1 expression in diabetes rescues cardiac function post AMI. Our results suggest that modulation of SDF-1 may improve post-AMI cardiac repair in diabetes. Stem Cells Translational Medicine 2018;7:115-124.

Keywords: Cardiac; Cell therapy; Diabetes; Stem cells; Stromal derived factor-1.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology
  • Chemokine CXCL12 / genetics
  • Chemokine CXCL12 / metabolism*
  • Diabetes Mellitus / pathology*
  • Male
  • Mesenchymal Stem Cell Transplantation*
  • Mesenchymal Stem Cells / metabolism
  • Mice
  • Mice, Inbred C57BL
  • Mice, Inbred NOD
  • Myocardial Infarction / pathology*
  • Myocardial Infarction / therapy*
  • Receptors, CXCR4 / genetics
  • Receptors, CXCR4 / metabolism*
  • Stroke Volume / drug effects

Substances

  • CXCR4 protein, mouse
  • Chemokine CXCL12
  • Cxcl12 protein, mouse
  • Receptors, CXCR4