Objective: To develop and prototype a high-throughput microplate assay to assess anaerobic microorganisms and lignocellulosic biomasses in a rapid, cost-effective screen for consolidated bioprocessing potential.
Results: Clostridium thermocellum parent Δhpt strain deconstructed Avicel to cellobiose, glucose, and generated lactic acid, formic acid, acetic acid and ethanol as fermentation products in titers and ratios similar to larger scale fermentations confirming the suitability of a plate-based method for C. thermocellum growth studies. C. thermocellum strain LL1210, with gene deletions in the key central metabolic pathways, produced higher ethanol titers in the Consolidated Bioprocessing (CBP) plate assay for both Avicel and switchgrass fermentations when compared to the Δhpt strain.
Conclusion: A prototype microplate assay system is developed that will facilitate high-throughput bioprospecting for new lignocellulosic biomass types, genetic variants and new microbial strains for bioethanol production.
Keywords: Bioethanol; Consolidated bioprocessing; High throughput screening; Lignocellulosic biomass; Microplate assay.