For over a century there have been continual efforts to incorporate nature into urban planning. These efforts (i.e., urban reconciliation) aim to manage and create habitats that support biodiversity within cities. Given that species select habitat at different spatial scales, understanding the scale at which urban species respond to their environment is critical to the success of urban reconciliation efforts. We assessed species-habitat relationships for common bat species at 50-m, 500-m, and 1 km spatial scales in the Chicago (U.S.A.) metropolitan area and predicted bat activity across the greater Chicago region. Habitat characteristics across all measured scales were important predictors of silver-haired bat (Lasionycteris noctivagans) and eastern red bat (Lasiurus borealis) activity, and big brown bat (Eptesicus fuscus) activity was significantly lower at urban sites relative to rural sites. Open vegetation had a negative effect on silver-haired bat activity at the 50-m scale but a positive effect at the 500-m scale, indicating potential shifts in the relative importance of some habitat characteristics at different scales. These results demonstrate that localized effects may be constrained by broader spatial patterns. Our findings highlight the importance of considering scale in urban reconciliation efforts and our landscape predictions provide information that can help prioritize urban conservation work.
Keywords: Bayesian variable selection; Chiroptera; acoustic monitoring; conservación urbana; ecología de reconciliación; escala; fauna urbana; modelo de ocupación; monitoreo acústico; occupancy model; selección de variable bayesiana.
© 2017 Society for Conservation Biology.