Natural Variation in SER1 and ENA6 Underlie Condition-Specific Growth Defects in Saccharomyces cerevisiae

G3 (Bethesda). 2018 Jan 4;8(1):239-251. doi: 10.1534/g3.117.300392.

Abstract

Despite their ubiquitous use in laboratory strains, naturally occurring loss-of-function mutations in genes encoding core metabolic enzymes are relatively rare in wild isolates of Saccharomyces cerevisiae Here, we identify a naturally occurring serine auxotrophy in a sake brewing strain from Japan. Through a cross with a honey wine (white tecc) brewing strain from Ethiopia, we map the minimal medium growth defect to SER1, which encodes 3-phosphoserine aminotransferase and is orthologous to the human disease gene, PSAT1 To investigate the impact of this polymorphism under conditions of abundant external nutrients, we examine growth in rich medium alone or with additional stresses, including the drugs caffeine and rapamycin and relatively high concentrations of copper, salt, and ethanol. Consistent with studies that found widespread effects of different auxotrophies on RNA expression patterns in rich media, we find that the SER1 loss-of-function allele dominates the quantitative trait locus (QTL) landscape under many of these conditions, with a notable exacerbation of the effect in the presence of rapamycin and caffeine. We also identify a major-effect QTL associated with growth on salt that maps to the gene encoding the sodium exporter, ENA6 We demonstrate that the salt phenotype is largely driven by variation in the ENA6 promoter, which harbors a deletion that removes binding sites for the Mig1 and Nrg1 transcriptional repressors. Thus, our results identify natural variation associated with both coding and regulatory regions of the genome that underlie strong growth phenotypes.

Keywords: QTL mapping; natural variation; salt stress; serine metabolism; yeast.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alcoholic Beverages / analysis
  • Caffeine / pharmacology
  • Copper / pharmacology
  • Culture Media / pharmacology
  • Ethanol / pharmacology
  • Fermentation
  • Gene Expression Regulation, Fungal*
  • Genome, Fungal*
  • Humans
  • Molecular Sequence Annotation
  • Polymorphism, Genetic*
  • Promoter Regions, Genetic
  • Quantitative Trait Loci
  • Repressor Proteins / genetics
  • Repressor Proteins / metabolism
  • Saccharomyces cerevisiae / drug effects
  • Saccharomyces cerevisiae / genetics*
  • Saccharomyces cerevisiae / growth & development
  • Saccharomyces cerevisiae / metabolism
  • Saccharomyces cerevisiae Proteins / genetics
  • Saccharomyces cerevisiae Proteins / metabolism
  • Salts / pharmacology
  • Sirolimus / pharmacology
  • Sodium-Potassium-Exchanging ATPase / deficiency
  • Sodium-Potassium-Exchanging ATPase / genetics*
  • Transaminases / deficiency
  • Transaminases / genetics*

Substances

  • Culture Media
  • MIG1 protein, S cerevisiae
  • NRG1 protein, S cerevisiae
  • Repressor Proteins
  • Saccharomyces cerevisiae Proteins
  • Salts
  • Caffeine
  • Ethanol
  • Copper
  • Transaminases
  • phosphoserine aminotransferase
  • Sodium-Potassium-Exchanging ATPase
  • Sirolimus