We have grown the MoAs2 single crystal which crystallizes in a monoclinic structure with C2/m space group. Transport measurements show that MoAs2 displays a metallic behavior at zero field and undergoes a metal-to-semiconductor crossover at low temperatures when the applied magnetic field is over 5 T. A robust resistivity plateau appears below 18 K and persists for the field up to 9 T. A large positive magnetoresistance (MR), reaching about 2600% at 2 K and 9 T, is observed when the field is perpendicular to the current. The MR becomes negative below 40 K when the field is rotated to be parallel to the current. The Hall resistivity shows the non-linear field-dependence below 70 K. The analysis using two-band model indicates a compensated electron-hole carrier density at low temperatures. A combination of the breakdown of Kohler's rule, the abnormal drop and the cross point in Hall data implies that a possible Lifshitz transition has occurred between 30 K and 60 K, likely driving the compensated electron-hole density, the large MR as well as the metal-semiconductor transition in MoAs2. Our results indicate that the family of centrosymmetric transition-metal dipnictides has rich transport behavior which can in general exhibit variable metallic and topological features.