Comparative genomics of Coniophora olivacea reveals different patterns of genome expansion in Boletales

BMC Genomics. 2017 Nov 16;18(1):883. doi: 10.1186/s12864-017-4243-z.

Abstract

Background: Coniophora olivacea is a basidiomycete fungus belonging to the order Boletales that produces brown-rot decay on dead wood of conifers. The Boletales order comprises a diverse group of species including saprotrophs and ectomycorrhizal fungi that show important differences in genome size.

Results: In this study we report the 39.07-megabase (Mb) draft genome assembly and annotation of C. olivacea. A total of 14,928 genes were annotated, including 470 putatively secreted proteins enriched in functions involved in lignocellulose degradation. Using similarity clustering and protein structure prediction we identified a new family of 10 putative lytic polysaccharide monooxygenase genes. This family is conserved in basidiomycota and lacks of previous functional annotation. Further analyses showed that C. olivacea has a low repetitive genome, with 2.91% of repeats and a restrained content of transposable elements (TEs). The annotation of TEs in four related Boletales yielded important differences in repeat content, ranging from 3.94 to 41.17% of the genome size. The distribution of insertion ages of LTR-retrotransposons showed that differential expansions of these repetitive elements have shaped the genome architecture of Boletales over the last 60 million years.

Conclusions: Coniophora olivacea has a small, compact genome that shows macrosynteny with Coniophora puteana. The functional annotation revealed the enzymatic signature of a canonical brown-rot. The annotation and comparative genomics of transposable elements uncovered their particular contraction in the Coniophora genera, highlighting their role in the differential genome expansions found in Boletales species.

Keywords: Annotation; Basidiomycete; Boletales; Brown-rot; Genome; Retrotransposon; Transposable elements.

MeSH terms

  • Basidiomycota / classification
  • Basidiomycota / genetics*
  • Evolution, Molecular*
  • Fungal Proteins / genetics
  • Genome Size
  • Genome, Fungal*
  • Genomics
  • Molecular Sequence Annotation
  • Multigene Family
  • Phylogeny
  • Proteomics
  • RNA-Directed DNA Polymerase / genetics
  • Retroelements
  • Terminal Repeat Sequences

Substances

  • Fungal Proteins
  • Retroelements
  • RNA-Directed DNA Polymerase