In July 2014, an outbreak of Shiga toxin-producing Escherichia coli (STEC) O55:H7 in England involved 31 patients, 13 (42%) of whom had hemolytic uremic syndrome. Isolates were sequenced, and the sequences were compared with publicly available sequences of E. coli O55:H7 and O157:H7. A core-genome phylogeny of the evolutionary history of the STEC O55:H7 outbreak strain revealed that the most parsimonious model was a progenitor enteropathogenic O55:H7 sorbitol-fermenting strain, lysogenized by a Shiga toxin (Stx) 2a-encoding phage, followed by loss of the ability to ferment sorbitol because of a non-sense mutation in srlA. The parallel, convergent evolutionary histories of STEC O157:H7 and STEC O55:H7 may indicate a common driver in the evolutionary process. Because emergence of STEC O157:H7 as a clinically significant pathogen was associated with acquisition of the Stx2a-encoding phage, the emergence of STEC O55:H7 harboring the stx2a gene is of public health concern.
Keywords: England; Ireland; STEC O55:H7; Shiga toxin–producing Escherichia coli serotype; bacteria; evolution; outbreak; virulence; whole-genome sequencing; zoonoses.