Network science is today established as a backbone for description of structure and function of various physical, chemical, biological, technological, and social systems. Here we review recent advances in the study of complex biological systems that were inspired and enabled by methods of network science. First, we present research highlights ranging from determination of the molecular interaction network within a cell to studies of architectural and functional properties of brain networks and biological transportation networks. Second, we focus on synergies between network science and data analysis, which enable us to determine functional connectivity patterns in multicellular systems. Until now, this intermediate scale of biological organization received the least attention from the network perspective. As an example, we review the methodology for the extraction of functional beta cell networks in pancreatic islets of Langerhans by means of advanced imaging techniques. Third, we concentrate on the emerging field of multilayer networks and review the first endeavors and novel perspectives offered by this framework in exploring biological complexity. We conclude by outlining challenges and directions for future research that encompass utilization of the multilayer network formalism in exploring intercellular communication patterns in tissues, and we advocate for network science being one of the key pillars for assessing physiological function of complex biological systems-from organelles to organs-in health and disease.
Keywords: Beta cells; Biological systems; Calcium signaling; Complex networks; Intercellular communication; Multilayer networks.
Copyright © 2017 Elsevier B.V. All rights reserved.