Transcranial Electric Stimulation (tES) is a widely used non-invasive brain stimulation technique. However, strong stimulation artifacts complicate the investigation of neural activity with EEG or MEG during tES. Thus, studying brain signals during tES requires detailed knowledge about the properties of these artifacts. Recently, we characterized the phase- and amplitude-relationship between tES stimulation currents and tES artifacts in EEG and MEG and provided a mathematical model of these artifacts (Noury and Siegel, 2017, and Noury et al., 2016, respectively). Among several other features, we showed that, independent of the stimulation current, the amplitude of tES artifacts is modulated time locked to heartbeat and respiration. In response to our work, a recent paper (Neuling et al., 2017) raised several points concerning the employed stimulation device and methodology. Here, we discuss these points, explain potential misunderstandings, and show that none of the raised concerns are applicable to our results. Furthermore, we explain in detail the physics underlying tES artifacts, and discuss several approaches how to study brain function during tES in the presence of residual artifacts.
Keywords: EEG; MEG; Neural entrainment; Stimulation artifacts; Transcranial alternating current stimulation (tACS); Transcranial direct current stimulation (tDCS); Transcranial electric stimulation (tES).
Copyright © 2017 Elsevier Inc. All rights reserved.