A liquid chromatography tandem-mass spectrometry method was developed to map the eleven disulfide bonds in Pfs25, a malaria transmission-blocking vaccine candidate. The compact and complex nature of Pfs25 has led to difficulties in prior peptide mapping efforts. Here, we report confirmation of proper disulfide pairing of a recombinant Pfs25, by optimizing denaturation and digestion with trypsin/Lys-C. The digested peptides were separated by reversed phase HPLC to obtain the peptide map and elucidate the disulfide linkages. MSE fragmentation confirmed the digested peptides and disulfide bonds. The eleven disulfide bonds and locations matched the predicted Pvs25 crystal structure, a Pfs25 homologue.
Keywords: Baculovirus; Disulfide; Malaria; Pfs25; Plasmodium falciparum.
Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.