Purpose: To quantify the impact of simulated errors for nasopharynx radiotherapy across multiple institutions and planning techniques (auto-plan generated Volumetric Modulated Arc Therapy (ap-VMAT), manually planned VMAT (mp-VMAT) and manually planned step and shoot Intensity Modulated Radiation Therapy (mp-ssIMRT)).
Methods: Ten patients were retrospectively planned with VMAT according to three institution's protocols. Within one institution two further treatment plans were generated using differing treatment planning techniques. This resulted in mp-ssIMRT, mp-VMAT, and ap-VMAT plans. Introduced treatment errors included Multi Leaf Collimator (MLC) shifts, MLC field size (MLCfs), gantry and collimator errors. A change of more than 5% in most selected dose metrics was considered to have potential clinical impact. The original patient plan total Monitor Units (MUs) were correlated to the total number of dose metrics exceeded.
Results: The impact of different errors was consistent, with ap-VMAT plans (two institutions) showing larger dose deviations than mp-VMAT created plans (one institution). Across all institutions' VMAT plans the significant errors included; ±5° for the collimator angle, ±5mm for the MLC shift and +1, ±2 and ±5mm for the MLC field size. The total number of dose metrics exceeding tolerance was positively correlated to the VMAT total plan MUs (r=0.51, p<0.001), across all institutions and techniques.
Conclusions: Differences in VMAT robustness to simulated errors across institutions occurred due to planning method differences. Whilst ap-VMAT was most sensitive to MLC errors, it also produced the best quality treatment plans. Mp-ssIMRT was most robust to errors. Higher VMAT treatment plan complexity led to less robust plans.
Keywords: MLC errors; Nasopharynx; Simulated; Uncertainties; VMAT.
Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.