The emission profile of volatile organic compounds (VOCs) and nitric oxide (NO) in young and mature leaves of Croton floribundus was assessed in plants exposed to filtered air (FA) and ozone-enriched filtered air (FA+O3). After the period of exposure, leaves were enclosed in polyethylene terephthalate bags and VOCs were collected in young and mature leaves. Both young and mature leaves constitutively emitted the same VOC, but the concentrations were higher in young leaves. O3 exposure induced the emission of sesquiterpenes (mainly β-caryophyllene) known as antioxidant compounds that may scavenge O3. Young leaves were the highest emitters of sesquiterpenes. O3 induced a rapid accumulation of NO in different tissues and leaf developmental stages; this accumulation was marked in palisade and spongy parenchyma cells in young and mature leaves, respectively. O3 altered the levels of the signaling compound methyl salicylate (MeSA). Moreover, our data showed that NO together with VOC emissions, such as geranyl acetate, α-cadiene, trans-farnesol, cis-β-farnesene, and MeSA, participate of plant defense mechanisms against the oxidative damage caused by O3.
Keywords: Croton floribundus; Leaf age; Methyl salicylate; Nitrogen oxides; Ozone.