Phosphine is the most widely used fumigant for stored grain insect pests, and resistance to phosphine has evolved in several species worldwide. This study was designed to determine the presence of phosphine resistance in 34 populations of Rhyzopertha dominica (F.) collected from the United States and Canada. Adult R. dominica were sampled and subjected to a discriminatory dose toxicity assay of exposure to 20 ppm of phosphine for 20 h of exposure to distinguish a susceptible R. dominica adult by death from a resistant beetle that survives the treatment. All but two of the 34 geographic populations surveyed had some beetles that were resistant to phosphine, and the frequency of resistance varied from 97% in a population from Parlier, California to 0% in beetles from both Carnduff, Saskatchewan and Starbuck, Manitoba. Probit analyses of dose-mortality bioassays with beetles from a laboratory-susceptible strain and those from five of the populations sampled were used to calculate resistance ratio factors (RRs) based on the ratio of LC50 (estimate for the concentration to kill 50% of a test group) in the sampled population to the LC50 for the susceptible strain. The highest RR for the five resistant populations was nearly 596-fold in beetles from Belle Glade, Florida, whereas the lowest RR in that group was 9-fold in Wamego, Kansas. This study revealed that phosphine resistance in R. dominica is common across North America and some populations have levels of resistance that may pose challenges for continued use of phosphine for their management.
Keywords: fumigation; hydrogen phosphide; insecticide resistance; resistance ratio; stored grain.
© The Author(s) 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For permissions, please e-mail: [email protected].