Longevity of protective immune responses induced by a split influenza A (H7N9) vaccine mixed with MF59 adjuvant in BALB/c mice

Oncotarget. 2017 Aug 8;8(54):91828-91840. doi: 10.18632/oncotarget.20064. eCollection 2017 Nov 3.

Abstract

The influenza virus is a serious threat to public health worldwide. A novel avian influenza A (H7N9) virus with a mortality rate of approximately 30% has been identified as an unusually dangerous virus for humans by the World Health Organization. Pathogenic H7N9 continue to represent a public health concern, and several candidate vaccines are currently in development. We generated candidate H7N9 vaccine strains using reverse genetics, consisting of hemagglutinin and neuraminidase genes derived from a human H7N9 virus and the remaining genes from the PR8 (A/PuertoRico/8/34 (H1N1)) virus. This H7N9 vaccine exhibited superior efficacy when combined with MF59 compared to other adjuvants. Immunized BALB/c mice were followed to determine the duration of the protective immune response. Antibody levels decreased to between one-half and one-eighth of the peak values four months after the final dose of the vaccine. Previously vaccinated mice received an A/Zhejiang/DTID-ZJU01/2013 H7N9 challenge six months post-vaccination, and all remained protected. We also verified that MF59 enhanced the HI, MN, and IgG antibody titers to influenza antigens. The humoral immune response and Th2 cytokine production following influenza challenge was potently induced in the animals that received the split vaccine. Therefore, the split H7N9 influenza vaccine with the MF59 adjuvant could effectively induce antibody production and protect mice from H7N9 virus challenge even after six months.

Keywords: H7N9; MF59; adjuvant vaccine; immunogenicity; protective immune responses.