Potential to curb the environmental burdens of American beef consumption using a novel plant-based beef substitute

PLoS One. 2017 Dec 6;12(12):e0189029. doi: 10.1371/journal.pone.0189029. eCollection 2017.

Abstract

The food demands of the United States (US) impart significant environmental pressures. The high rate of consumption of beef has been shown to be the largest driver of food-borne greenhouse gas emissions, water use and land occupation in the US diet. The environmental benefits of substituting animal products with vegetal foods are well documented, but significant psychological barriers persist in reducing meat consumption. Here we use life cycle assessment to appraise the environmental performance of a novel vegetal protein source in the mean US diet where it replaces ground beef, and in vegetarian and vegan diets where it substitutes for legumes, tofu and other protein sources. We find that relative to the mean US diet, vegetarian and vegan diets significantly reduce per-capita food-borne greenhouse gas emission (32% and 67%, respectively), blue water use (70% and 75%, respectively) and land occupation (70% and 79%, respectively), primarily in the form of rangeland. The substitution of 10%, 25% and 50% of ground beef with plant-based burger (PBB) at the national scale results in substantial reductions in annual US dietary greenhouse gas emissions (4.55-45.42 Mt CO2 equivalents), water consumption (1.30-12.00 km3) and land occupation (22300-190100 km2). Despite PBB's elevated environmental pressures compared to other vegetal protein sources, we demonstrate that minimal risk exists for the disservices of PBB substitution in non-meat diets to outweigh the benefits of ground-beef substitution in the omnivorous American diet. Demand for plant-based oils in PBB production has the potential to increase land use pressures in biodiversity hotspots, though these could be obviated through responsible land stewardship. Although the apparent environmental benefits of the PBB are contingent on actual uptake of the product, this study demonstrates the potential for non-traditional protein substitutes to play a role in a transition towards more sustainable consumption regimes in the US and potentially abroad.

MeSH terms

  • Animals
  • Cattle
  • Diet*
  • Greenhouse Effect
  • Humans
  • Meat Products*
  • Plant Proteins / administration & dosage*
  • United States

Substances

  • Plant Proteins

Grants and funding

Impossible Foods provided support in the form of salaries for authors RM and NS, but did not have any additional role in the study design, data collection and analysis or preparation of the manuscript. The specific roles of these authors are articulated in the ‘author contributions’ section. The CEO of Impossible Foods had minor say on the final decision to publish, but this did not affect the manner in which data collection, calculations, results interpretation or manuscript drafting were performed.