Large aromatic carbon nanostructures are cornerstone materials due to their increasingly active role in functional devices, but their synthesis in solution encounters size and shape limitations. New on-surface strategies facilitate the synthesis of large and insoluble planar systems with atomic-scale precision. While dehydrogenation is usually the chemical zipping reaction building up large aromatic carbon structures, mostly benzenoid structures are being produced. Here, we report on a new cyclodehydrogenation reaction transforming a sterically stressed precursor with conjoined cove regions into a planar carbon platform by incorporating azulene moieties in their interior. Submolecular resolution STM is used to characterize this exotic large polycyclic aromatic compound on Au(111) yielding unprecedented insight into a dehydrogenative intramolecular aryl-aryl coupling reaction. The resulting polycyclic aromatic carbon structure shows a [18]annulene core hosting peculiar pore states confined at the carbon cavity.
Keywords: Nanographenes; azulene; on-surface synthesis; scanning tunneling microscope.