Metallothioneins (MTs) are small, cysteine-rich proteins characterized by a high affinity for monovalent and divalent cations, such as copper and zinc. Of the four known MT isoforms, only, members of the MT 1 and 2 subfamilies are widely expressed, acting as metal chaperones whose primary role is to mediate intracellular zinc homoeostasis. Metallothioneins are potently induced by heavy metals and other sources of oxidative stress where they facilitate metal binding and detoxification as well as free radical scavenging. Metallothionein expression is well documented in the context of viral infection; however, it remains uncertain whether MTs possess specific antiviral roles or whether induction is merely a consequence of cellular stress. To better understand the role of MTs following hepatitis C virus (HCV) infection, we examined MT expression and localization in vitro and in vivo and used a siRNA knockdown approach to ascertain their antiviral efficacy. We confirmed HCV-driven MT induction in vitro and demonstrated MT accumulation in the nucleus of HCV-infected hepatocytes by immunofluorescence. Using a pan-MT siRNA to knock down all members of the MT1 and MT2 subfamilies, we demonstrate that they are mildly antiviral against the JFH1 strain of HCV in vitro (~1.4 fold increase in viral RNA, P < .05). Furthermore, the antiviral effect of zinc treatment against HCV in vitro was mediated through MT induction (P < .05). Our data suggest a potential benefit of using zinc as a low-cost adjunct to current HCV antiviral therapies and suggest that zinc may facilitate the antiviral role of MTs against other viruses.
Keywords: JFH1; hepatitis C; metallothionein; zinc.
© 2017 John Wiley & Sons Ltd.