g-C3 N4 has been found to be highly functional in many fields, such as photocatalysis, electrocatalysis, and chemical analysis. Pickering emulsion polymerization is a fascinating strategy to fabricate a range of nanomaterials, in which the emulsion is stabilized by solid particles, rather than molecular surfactants. Herein, we demonstrate that g-C3 N4 can act as a remarkable stabilizer for Pickering emulsion polymerization. Contrary to normal Pickering systems, monodisperse polystyrene microspheres with tunable size, surface charge, and morphology were achieved using this approach. Importantly, the g-C3 N4 hybridized latex is highly processable and has exhibited multiple functions: manufacture of photonic crystals via self-organization, stabilizing Pickering emulsion owing to proper wettability, and acting as bioimaging agents with enriched fluorescent colors. Considering the easy synthesis and low cost of g-C3 N4 , our approach has a high potential for scale-up synthesis and practical translation.
Keywords: fluorescent microspheres; graphene; imaging agents; nanomaterials; polymerization.
© 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.