Seagrass meadows are ecologically and economically important components of many coastal areas worldwide. Ecosystem services provided by seagrasses include reducing the number of microbial pathogens in the water, providing food, shelter and nurseries for many species, and decreasing the impact of waves on the shorelines. A global assessment reported that 29% of the known areal extent of seagrasses has disappeared since seagrass areas were initially recorded in 1879. Several factors such as direct and indirect human activity contribute to the demise of seagrasses. One of the main reasons for seagrass die-offs all over the world is increased sulfide concentrations in the sediment that result from the activity of sulfate-reducing prokaryotes, which perform the last step of the anaerobic food chain in marine sediments and reduce sulfate to H₂S. Recent seagrass die-offs, e.g., in the Florida and Biscayne Bays, were caused by an increase in pore-water sulfide concentrations in the sediment, which were the combined result of unfavorable environmental conditions and the activities of various groups of heterotrophic bacteria in the sulfate-rich water-column and sediment that are stimulated through increased nutrient concentrations. Under normal circumstances, seagrasses are able to withstand low levels of sulfide, probably partly due to microbial symbionts, which detoxify sulfide by oxidizing it to sulfur or sulfate. Novel studies are beginning to give greater insights into the interactions of microbes and seagrasses, not only in the sulfur cycle. Here, we review the literature on the basic ecology and biology of seagrasses and focus on studies describing their microbiome.
Keywords: holobiont; microbiome; rhizosphere; seagrass; sulfide.