Function and structure of atypical muscle spindles after neonatal nerve crush in rats

Exp Brain Res. 1989;74(2):417-20. doi: 10.1007/BF00248876.

Abstract

During the early postnatal period, the differentiation and maturation of muscle spindles in the rat is still dependent on their sensory innervation. When a nerve is crushed during this period, most spindles in the denervated muscles degenerate and after reinnervation only occasional spindles of atypical structure are to be found in these muscles. We determined the basic functional properties of these atypical spindles in adult rats and attempted to correlate them with their structural characteristics. The discharge rates of 13 afferent units from the soleus or lateral gastrocnemius muscles were evaluated in response to stretch. These units were capable of a slowly adapting response to 2-4 mm stretches. Their mean discharge frequencies at any point of the ramp-and-hold stretch were, however, on an average 50% lower than normal values. The conduction velocities of afferents from the atypical spindles were in the range of 10-40 m/s. Histological examinations revealed that 90% of the atypical muscle spindles found in the soleus or lateral gastrocnemius muscles had only 1 or 2 intrafusal fibres without any nuclear accumulations as compared to four intrafusal fibres in normal muscle spindles in the rat. The proportional decrease of the discharge rate in both the dynamic and static part of the response of these atypical spindles could be due to the decreased synaptic area between the sensory terminals and the intrafusal fibres and/or to altered structural properties of the intrafusal fibres.

MeSH terms

  • Action Potentials
  • Animals
  • Cell Count
  • Female
  • Male
  • Mechanoreceptors / physiology*
  • Muscle Denervation*
  • Muscles / cytology
  • Muscles / innervation*
  • Muscles / physiology
  • Nerve Crush
  • Neural Conduction
  • Rats
  • Rats, Inbred Strains
  • Time Factors