Two types of spawning strategy have been described for ommastrephid squids: coastal and oceanic. It has been suggested that ancestral ommastrephids inhabited coastal waters and expanded their distribution into the open ocean during global changes in ocean circulation in the Oligocene. This hypothesis could explain the different reproductive strategies in oceanic squids, but has never been tested in a phylogenetic context. In the present study, we assess the coastal-to-open-ocean hypothesis through inferring the evolution of reproductive traits (spawning type) of ommastrephid squids using the phylogenetic comparative method to estimate ancestral states and divergence times. This analysis was performed using a robust molecular phylogeny with three mitochondrial genes (COI, CYTB and 16S) and two nuclear genes (RHO and 18S) for nearly all species of ommastrephid squid. Our results support dividing the Ommastrephidae into the three traditional subfamilies, plus the monotypic subfamily Todaropsinae as proposed previously. Divergence times were found to be older than those suggested. Our analyses strongly suggest that early ommastrephid squids spawned in coastal areas, with some species subsequently switching to spawn in oceanic areas, supporting previous non-tested hypotheses. We found evidence of gradual evolution change of spawning type in ommastrephid squids estimated to have occurred since the Cretaceous.
Keywords: Ancestral states; Cephalopoda; Divergence times; Evolution; Reproduction.
Copyright © 2017 Elsevier Inc. All rights reserved.