Old Brains Come Uncoupled in Sleep: Slow Wave-Spindle Synchrony, Brain Atrophy, and Forgetting

Neuron. 2018 Jan 3;97(1):221-230.e4. doi: 10.1016/j.neuron.2017.11.020. Epub 2017 Dec 14.

Abstract

The coupled interaction between slow-wave oscillations and sleep spindles during non-rapid-eye-movement (NREM) sleep has been proposed to support memory consolidation. However, little evidence in humans supports this theory. Moreover, whether such dynamic coupling is impaired as a consequence of brain aging in later life, contributing to cognitive and memory decline, is unknown. Combining electroencephalography (EEG), structural MRI, and sleep-dependent memory assessment, we addressed these questions in cognitively normal young and older adults. Directional cross-frequency coupling analyses demonstrated that the slow wave governs a precise temporal coordination of sleep spindles, the quality of which predicts overnight memory retention. Moreover, selective atrophy within the medial frontal cortex in older adults predicted a temporal dispersion of this slow wave-spindle coupling, impairing overnight memory consolidation and leading to forgetting. Prefrontal-dependent deficits in the spatiotemporal coordination of NREM sleep oscillations therefore represent one pathway explaining age-related memory decline.

Keywords: age-related memory decline; aging; atrophy; directional cross-frequency coupling; hierarchical nesting; hippocampus-dependent memory consolidation; overnight forgetting; prefrontal cortex; sleep spindles; slow oscillation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aging / pathology*
  • Aging / physiology
  • Atrophy
  • Brain / pathology*
  • Brain / physiopathology*
  • Female
  • Humans
  • Male
  • Memory Consolidation / physiology*
  • Sleep / physiology*
  • Young Adult