Performance Improvement of V-Fe-Cr-Ti Solid State Hydrogen Storage Materials in Impure Hydrogen Gas

ACS Appl Mater Interfaces. 2018 Jan 17;10(2):1662-1671. doi: 10.1021/acsami.7b13541. Epub 2018 Jan 2.

Abstract

Two approaches of engineering surface structures of V-Ti-based solid solution hydrogen storage alloys are presented, which enable improved tolerance toward gaseous oxygen (O2) impurities in hydrogen (H2) gas. Surface modification is achieved through engineering lanthanum (La)- or nickel (Ni)-rich surface layers with enhanced cyclic stability in an H2/O2 mixture. The formation of a Ni-rich surface layer does not improve the cycling stability in H2/O2 mixtures. Mischmetal (Mm, a mixture of La and Ce) agglomerates are observed within the bulk and surface of the alloy when small amounts of this material are added during arc melting synthesis. These agglomerates provide hydrogen-transparent diffusion pathways into the bulk of the V-Ti-Cr-Fe hydrogen storage alloy when the remaining oxidized surface is already nontransparent for hydrogen. Thus, the cycling stability of the alloy is improved in an O2-containing hydrogen environment as compared to the same alloy without addition of Mm. The obtained surface-engineered storage material still absorbs hydrogen after 20 cycles in a hydrogen-oxygen mixture, while the original material is already deactivated after 4 cycles.

Keywords: hydrogen storage; impure hydrogen; metal hydrides; surface engineering; surface reactions.