Aluminium (Al) toxicity is the most important soil constraint for plant growth and development in acid soils (pH < 5.5) globally in agricultural regions. Boron (B) is an essential micronutrient for the growth and development of higher plants. The results of previous studies propose that B might ameliorate Al toxicity; however, none of the studies have been conducted on trifoliate orange to study this effect. Thus, a study was carried out in hydroponics comprising of two different Al concentrations, 0 and 400 μM. For every concentration, two B treatments (0 and 10 μM as H3BO3) were applied to investigate the B-induced alleviation of Al toxicity and exploring the underneath mechanisms. The results revealed that Al toxicity under B deficiency severely hampered the root growth and physiology of plant, caused oxidative stress and membrane damage, leading to severe root injury and damage. However, application of B under Al toxicity improved the root elongation and photosynthesis, while reduced Al uptake and mobilization into plant parts. Moreover, B supply regulated the activities of antioxidant enzymes, proline, secondary metabolites (phenylalanine ammonia lyase and polyphenol oxidase) contents, and stabilized integrity of proteins. Our study results imply that B supply promoted root growth as well as defense system by reducing reactive oxygen species (ROS) and Al concentrations in plant parts thus B induced alleviation of Al toxicity; a fact that might be significant for higher productivity of agricultural plants grown in acidic conditions.
Keywords: Aluminium alleviation; Aluminium toxicity; Antioxidant defense system; Boron; Root cell injury; Trifoliate orange.
Copyright © 2017 Elsevier Ltd. All rights reserved.