Allosteric modulation of protein-protein interactions by individual lipid binding events

Nat Commun. 2017 Dec 19;8(1):2203. doi: 10.1038/s41467-017-02397-0.

Abstract

The diverse lipid environment of the biological membrane can modulate the structure and function of membrane proteins. However, little is known about the role that lipids play in modulating protein-protein interactions. Here we employed native mass spectrometry (MS) to determine how individual lipid-binding events to the ammonia channel (AmtB) modulate its interaction with the regulatory protein, GlnK. The thermodynamic signature of AmtB-GlnK in the absence of lipids indicates conformational dynamics. A small number of lipids bound to AmtB is sufficient to modulate the interaction with GlnK, and lipids with different headgroups display a range of allosteric modulation. We also find that lipid chain length and stereochemistry can affect the degree of allosteric modulation, indicating an unforeseen selectivity of membrane proteins toward the chemistry of lipid tails. These results demonstrate that individual lipid-binding events can allosterically modulate the interactions of integral membrane and soluble proteins.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Calorimetry / methods
  • Cation Transport Proteins / chemistry*
  • Cation Transport Proteins / metabolism
  • Cell Membrane
  • Escherichia coli / metabolism*
  • Escherichia coli Proteins / chemistry*
  • Escherichia coli Proteins / metabolism
  • Lipid Metabolism*
  • Lipids / chemistry*
  • Mass Spectrometry
  • Nucleotidyltransferases / chemistry*
  • Nucleotidyltransferases / metabolism
  • PII Nitrogen Regulatory Proteins / chemistry*
  • PII Nitrogen Regulatory Proteins / metabolism
  • Protein Binding
  • Protein Conformation
  • Surface Plasmon Resonance / methods
  • Thermodynamics

Substances

  • AmtB protein, E coli
  • Cation Transport Proteins
  • Escherichia coli Proteins
  • Lipids
  • PII Nitrogen Regulatory Proteins
  • glnK protein, E coli
  • Nucleotidyltransferases