Thioredoxins are small and universal proteins, which are involved in the cell redox regulation. In plants, they participate in a broad range of biochemical processes like self-incompatibility, seed germination, pathogen & pest defense and oxidative stress tolerance. The h-type of thioredoxin (Trx-h) protein represents the largest Trx family. Herein, we characterized the Helicoverpa - inducible Trx h from an important legume, Cicer arietinum, CaHaTrx-h, 'CGFS' type Trxs, which encodes for a 113 amino acids long protein and possess characteristic motifs "FLKVDVDE" and "VVDFTASWCGPCRFIAPIL" and 73% sequence identity with AtTrx-h. Homology modeling and simulation of the target showed that the extended ß-sheet regions remain stable during the simulation while the helical regions fluctuate between alpha and 3-10 helical forms and highlights the flexibility of helix2-helix3 and terminal regions probably to accommodate an approaching protein target and facilitate their interaction. During the simulation, the structure exists in five energy minima clusters with biggest cluster size belonging to 20-25 ns time frames. PR-5 and Mannitol Dehydrogenase were nominated as potential targets and share close interaction with CaHaTrx-h via disulfide bond reduction. The study is an effort in the direction of understanding stress-related mechanisms in crop plants to overcome losses in agricultural yield.
Keywords: Chickpea; Comparative modeling; Docking; Herbivory; Redox regulation; Thioredoxin h.
Copyright © 2017 Elsevier B.V. All rights reserved.