MicroRNAs (miRNAs) exhibit a crucial role in the regulation of angiogenesis and tumor progression, of which miR-199a-5p (miR-199a) has been reported to function as a tumor suppressor in multiple malignancies. However, the precise mechanisms underlying miR-199a in hemangiomas (HAs) remain elusive. In this study, we found that miR-199a had low expression level, while proliferating cell nuclear antigen (PCNA) had high expression level in proliferating-phase HAs compared with the involuting-phase HAs and normal tissues. Spearman correlation analysis revealed the negative correlation of miR-199a with PCNA expression in proliferating-phase HAs. In vitro experiments showed that restoration of miR-199a suppressed cell proliferation capability and induced cell apoptosis in HA-derived endothelial cells (HDEC) and CRL-2586 EOMA cells, followed with decreased PCNA expression and increased cleaved caspase-3 expression, but miR-199a inhibitor reversed these effects. Furthermore, HIF1A was identified as a target of miR-199a and had negative correlation with miR-199a expression in proliferating-phase HAs. Overexpression of HIF1A attenuated the anti-proliferation effect of miR-199a mimic in HAs cells. Taken together, our findings demonstrate that miR-199a may inhibit proliferation and induce apoptosis in HAs cells via targeting HIF1A and provide a potential therapeutic target for HAs.
Keywords: HIF1A; apoptosis; hemangioma; miR-199a-5p; proliferation.