Cropping System Conversion led to Organic Carbon Change in China's Mollisols Regions

Sci Rep. 2017 Dec 22;7(1):18064. doi: 10.1038/s41598-017-18270-5.

Abstract

Land use change driven by diet, globalization, and technology advancement have greatly influenced agricultural production and environment in the mollisols region of China, with a marked impact on the depletion of soil organic matter, a signature property of mollisols. Here we report findings on soil organic carbon (SOC) change in three different cropping systems (soybean, soybean/maize, corn) in Northeast China during a 10-year time span. The results indicated that the decline rate of SOC in recent ten years (0.27 g kg-1 yr-1) has slowed down considerably compared to previous decades (1.12 g kg-1 yr-1). Crop system conversion from soybean monocropping to corn monocropping or break system was the critical factor for SOC change, and the background SOC was the second influence factor. When approaching a SOC turning point, conversion from low carbon input crop system (soybeans monocropping) to high carbon input crop system helped slow down the SOC decline (break crop) or even improve SOC (corn monocropping) in mollisols regions. This result implied that imported soybean has brought benefit for Northeast China. But for sustainable goal in China's mollisols region, straw returning, optimized nitrogen fertilization and no tillage are all necessary whatever in continues maize or rotation system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Agriculture / methods*
  • Carbon / analysis*
  • Carbon Sequestration*
  • China
  • Crops, Agricultural*
  • Fertilizers
  • Glycine max
  • Nitrogen
  • Soil / chemistry*
  • Zea mays

Substances

  • Fertilizers
  • Soil
  • Carbon
  • Nitrogen