Iron-sulfur clusters biogenesis by the SUF machinery: close to the molecular mechanism understanding

J Biol Inorg Chem. 2018 Jun;23(4):581-596. doi: 10.1007/s00775-017-1527-3. Epub 2017 Dec 26.

Abstract

Iron-sulfur clusters (Fe-S) are amongst the most ancient and versatile inorganic cofactors in nature which are used by proteins for fundamental biological processes. Multiprotein machineries (NIF, ISC, SUF) exist for Fe-S cluster biogenesis which are mainly conserved from bacteria to human. SUF system (sufABCDSE operon) plays a general role in many bacteria under conditions of iron limitation or oxidative stress. In this mini-review, we will summarize the current understanding of the molecular mechanism of Fe-S biogenesis by SUF. The advances in our understanding of the molecular aspects of SUF originate from biochemical, biophysical and recent structural studies. Combined with recent in vivo experiments, the understanding of the Fe-S biogenesis mechanism considerably moved forward.

Keywords: Biosynthesis; Iron–sulfur cluster; Mechanism; Metallocenter assembly; SUF.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism*
  • Humans
  • Iron-Sulfur Proteins / biosynthesis*
  • Operon / genetics

Substances

  • Bacterial Proteins
  • Iron-Sulfur Proteins