Testicular organoids: a new model to study the testicular microenvironment in vitro?

Hum Reprod Update. 2018 Mar 1;24(2):176-191. doi: 10.1093/humupd/dmx036.

Abstract

Background: In recent decades, a broad range of strategies have been applied to model the testicular microenvironment in vitro. These models have been utilized to study testicular physiology and development. However, a system that allows investigations into testicular organogenesis and its impact in the spermatogonial stem-cell (SSC) niche in vitro has not been developed yet. Recently, the creation of tissue-specific organ-like structures called organoids has resurged, helping researchers to answer scientific questions that previous in vitro models could not help to elucidate. So far, a small number of publications have concerned the generation of testicular organoids and their application in the field of reproductive medicine and biology.

Objective and rationale: Here, we aim to elucidate whether testicular organoids might be useful in answering current scientific questions about the regulation and function of the SSC niche as well as germ cell proliferation and differentiation, and whether or not the existing in vitro models are already sufficient to address them. Moreover, we would like to discuss how an organoid system can be a better solution to address these prominent scientific problems in our field, by the creation of a rationale parallel to those in other areas where organoid systems have been successfully utilized.

Search methods: We comprehensively reviewed publications regarding testicular organoids and the methods that most closely led to the formation of these organ-like structures in vitro by searching for the following terms in both PubMed and the Web of Science database: testicular organoid, seminiferous tubule 3D culture, Sertoli cell 3D culture, testicular cord formation in vitro, testicular morphogenesis in vitro, germ cell 3D culture, in vitro spermatogenesis, testicular de novo morphogenesis, seminiferous tubule de novo morphogenesis, seminiferous tubule-like structures, testicular in vitro model and male germ cell niche in vitro, with no restrictions to any publishing year. The inclusion criteria were based on the relation with the main topic (i.e. testicular organoids, testicular- and seminiferous-like structures as in vitro models), methodology applied (i.e. in vitro culture, culture dimensions (2D, 3D), testicular cell suspension or fragments) and outcome of interest (i.e. organization in vitro). Publications about grafting of testicular tissue, germ-cell transplantation and female germ-cell culture were excluded.

Outcomes: The application of organoid systems is making its first steps in the field of reproductive medicine and biology. A restricted number of publications have reported and characterized testicular organoids and even fewer have denominated such structures by this method. However, we detected that a clear improvement in testicular cell reorganization is recognized when 3D culture conditions are utilized instead of 2D conditions. Depending on the scientific question, testicular organoids might offer a more appropriate in vitro model to investigate testicular development and physiology because of the easy manipulation of cell suspensions (inclusion or exclusion of a specific cell population), the fast reorganization of these structures and the controlled in vitro conditions, to the same extent as with other organoid strategies reported in other fields.

Wider implications: By way of appropriate research questions, we might use testicular organoids to deepen our basic understanding of testicular development and the SSC niche, leading to new methodologies for male infertility treatment.

Keywords: in vitro spermatogenesis; in vitro testicular models; 2D and 3D culture; Sertoli cells; blood–testis barrier; male infertility; spermatogonial stem-cell niche; testicular organoids; testis.