Clock mediates liver senescence by controlling ER stress

Aging (Albany NY). 2017 Dec 22;9(12):2647-2665. doi: 10.18632/aging.101353.

Abstract

Accumulated evidence indicates that circadian genes regulate cell damage and senescence in most mammals. Endoplasmic reticulum (ER) stress and reactive oxygen species (ROS) regulate longevity in many organisms. However, the specific mechanisms of the relationship between the circadian clock and the two stress processes in organisms are poorly understood. Here, we show that Clock-mediated Pdia3 expression is required to sustain reactive oxidative reagents and ER stress. First, ER stress and ROS are strongly activated in the liver tissue of Clock∆19 mutant mice, which exhibit a significant aging phenotype. Next, transcription of Pdia3 is mediated by the circadian gene Clock, but this process is affected by the Clock∆19 mutant due to the low affinity of the E-box motif in the promoter. Finally, ablation of Pdia3 with siRNA causes ER stress with sustained phosphorylation of PERK and eIF1α, resulting in exaggerated up-regulation of UPR target genes and increased apoptosis as well as ROS. Moreover, the combined effects result in an imbalance of cell homeostasis and ultimately lead to cell damage and senescence. Taken together, this study identified the circadian gene Clock as a regulator of ER stress and senescence, which will provide a reference for the clinical prevention of aging.

Keywords: PDIA3; PERK; ROS; UPR; circadian locomotor output cycles kaput; endoplasmic reticulum stress.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CLOCK Proteins / genetics*
  • Cellular Senescence / genetics*
  • Endoplasmic Reticulum Stress / genetics*
  • Female
  • Gene Expression Regulation / genetics
  • Liver / metabolism
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Mutant Strains
  • Protein Disulfide-Isomerases / biosynthesis
  • Protein Disulfide-Isomerases / genetics*

Substances

  • CLOCK Proteins
  • Clock protein, mouse
  • Pdia3 protein, mouse
  • Protein Disulfide-Isomerases