Role of Multichance Fission in the Description of Fission-Fragment Mass Distributions at High Energies

Phys Rev Lett. 2017 Dec 1;119(22):222501. doi: 10.1103/PhysRevLett.119.222501. Epub 2017 Nov 27.

Abstract

Fission-fragment mass distributions were measured for ^{237-240}U, ^{239-242}Np, and ^{241-244}Pu populated in the excitation-energy range from 10 to 60 MeV by multinucleon transfer channels in the reaction ^{18}O+^{238}U at the Japan Atomic Energy Agency tandem facility. Among them, the data for ^{240}U and ^{240,241,242}Np were observed for the first time. It was found that the mass distributions for all the studied nuclides maintain a double-humped shape up to the highest measured energy in contrast to expectations of predominantly symmetric fission due to the washing out of nuclear shell effects. From a comparison with the dynamical calculation based on the fluctuation-dissipation model, this behavior of the mass distributions was unambiguously attributed to the effect of multichance fission.