Intercalation of calcein into layered silicate magadiite and their optical properties

R Soc Open Sci. 2017 Nov 29;4(11):171258. doi: 10.1098/rsos.171258. eCollection 2017 Nov.

Abstract

Calcein-Ca (II), Zn (II) and Al (III) complexes were successfully intercalated into interlayer surfaces of layered silicate magadiite and fluorescence properties of organic metal-chelates in the confined spaces were investigated. Structures, compositions and morphologies of the intercalated magadiites were adequately studied by tests, including X-ray diffraction, energy-dispersive X-ray spectrometer, elemental mapping, X-ray photoelectron spectroscopy, inductively coupled plasma atomic emission spectroscopy, Fourier-transform infrared spectra, ultraviolet-visible spectroscopy, thermo-gravimetric analysis, differential thermal analysis and scanning electron microscopy. Results confirmed that metal-organic chelate species were immobilized onto the silicate sheets via solid-state interaction. Basal spacings between silicate layers decreased by exchanged metal ions and increased after intercalation of calcein into the interlayer spaces of cation-exchanged magadiites. The encapsulation was obtained by a flexible solid-solid reaction, and the present reaction and products had a potential of application to industrial uses. A speculative mechanism was proposed for reaction by solid-state intercalation. Furthermore, it was found that the complexes in the interlayer space also exhibited special fluorescence properties. The significance of this current work was that it provided a possible route for synthesizing metal-organic complexes that encapsulated in phyllosilicate.

Keywords: calcein; fluorescence; layered silicates; magadiite; solid-state intercalation.

Associated data

  • figshare/10.6084/m9.figshare.c.3935656