Comparing an Annual and a Daily Time-Step Model for Predicting Field-Scale Phosphorus Loss

J Environ Qual. 2017 Nov;46(6):1314-1322. doi: 10.2134/jeq2016.04.0159.

Abstract

A wide range of mathematical models are available for predicting phosphorus (P) losses from agricultural fields, ranging from simple, empirically based annual time-step models to more complex, process-based daily time-step models. In this study, we compare field-scale P-loss predictions between the Annual P Loss Estimator (APLE), an empirically based annual time-step model, and the Texas Best Management Practice Evaluation Tool (TBET), a process-based daily time-step model based on the Soil and Water Assessment Tool. We first compared predictions of field-scale P loss from both models using field and land management data collected from 11 research sites throughout the southern United States. We then compared predictions of P loss from both models with measured P-loss data from these sites. We observed a strong and statistically significant ( < 0.001) correlation in both dissolved (ρ = 0.92) and particulate (ρ = 0.87) P loss between the two models; however, APLE predicted, on average, 44% greater dissolved P loss, whereas TBET predicted, on average, 105% greater particulate P loss for the conditions simulated in our study. When we compared model predictions with measured P-loss data, neither model consistently outperformed the other, indicating that more complex models do not necessarily produce better predictions of field-scale P loss. Our results also highlight limitations with both models and the need for continued efforts to improve their accuracy.

MeSH terms

  • Agriculture
  • Models, Theoretical*
  • Phosphorus / analysis*
  • Soil
  • Texas
  • Water Pollutants

Substances

  • Soil
  • Water Pollutants
  • Phosphorus