Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway

Hypertension. 2018 Feb;71(2):297-305. doi: 10.1161/HYPERTENSIONAHA.117.09906. Epub 2018 Jan 2.

Abstract

Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2-dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease.

Keywords: cyclooxygenase 2; endothelium; inflammation; regional blood flow; spleen.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cyclooxygenase 2 / metabolism*
  • Cyclooxygenase Inhibitors / pharmacology
  • Kidney / blood supply
  • Kidney / metabolism*
  • Mice
  • PPAR delta / metabolism*
  • PPAR-beta / metabolism*
  • Renal Circulation / drug effects*
  • Signal Transduction / drug effects

Substances

  • Cyclooxygenase Inhibitors
  • PPAR delta
  • PPAR-beta
  • Cyclooxygenase 2