Glycogen synthase kinase-3 (GSK-3), a serine/threonine kinase is an archetypal multifunctional moonlighting protein involved in diverse cellular processes including metabolism, insulin signaling, proliferation, differentiation, apoptosis, neuronal function and embryonic development. The two known isoforms, GSK-3α and GSK-3β that undergo activation/inactivation by post-translational, site-specific phosphorylation incorporate a vast number of substrates in their repertoire. Dysregulation of GSK-3 has been linked to diverse disease entities including cancer. The role of GSK-3 in cancer is paradoxical and enigmatic. The enzyme functions as a tumour promoter or suppressor based on the context, cell type and phosphorylation status. GSK-3 is the central hub that orchestrates signals from the Wnt/β-catenin, PI3K/PTEN/Akt/mTOR, Ras/Raf/MEK/ERK, hedgehog, Notch and TP53 pathways to elicit regulatory influences on cancer initiation, epithelial-mesenchymal transition, and resistance to therapy. As a direct target of several microRNAs, GSK-3 influences hallmark attributes of cancer, cancer stemness and treatment resistance. There is overwhelming evidence to indicate that GSK-3 is aberrantly regulated in different cancer types. Consequently, GSK-3 has emerged as a potential therapeutic target in cancer. A plethora of natural and synthetic GSK-3 modulators have been discovered and the number of patents published for GSK-3 inhibitors has also been steadily increasing in recent years. This review focuses on the intricate interactions between GSK-3 and oncogenic signalling circuits as well as the feasibility of targeting GSK-3 for the treatment of cancer.
Keywords: Cancer; GSK-3; MicroRNA; Moonlighting proteins; Oncogenic signalling; Targeted therapy.
Copyright © 2017. Published by Elsevier Ltd.