A superparamagnetic molecularly imprinted biopolymer (SMIBP) was utilized as an eco-friendly and worth welting bio-sorbent and subsequently was applied for selective dispersive solid phase extraction (d-SPE) and selective separation of baclofen from urine samples. This effective solid phase was biopolymer network with imprinted cavities grafted on the surface of Fe3O4 cores possessing an influential SiO2 layer. The present sorbent easily achieved via co-precipitation and sol-gel processes followed by impressive bio-polymerization route under green and mild reaction conditions. The prepared SMIBP was subsequently characterized by different techniques including SEM, VSM, FT-IR, XRD, TEM and TGA verifying high suitability of the proposed solid phase for trapping and accumulation of target compound. Under optimized conditions recommended by experimental design, understudy SMIBP-d-SPE procedure supplied linear response over 1.0-2500.0µgL-1 with a satisfactory detection limit close to 0.26µgL-1, while repeatability assign to intra-day and inter-day precision as coefficients of variation was lower than 3.9% in both case. These appropriate validation imply high ability of proposed microextraction procedure for clean and effective enrichment of target analyte in complex human urine sample cause consequently leading to accurate analyses at ultra-trace levels.
Keywords: Baclofen; Experimental design methodology; Human urine; Mild and green synthesis; Molecularly imprinted biopolymer; Water-compatible.
Copyright © 2017 Elsevier B.V. All rights reserved.