Heavy Atom Secondary Kinetic Isotope Effect on H-Tunneling

J Phys Chem A. 2018 Feb 8;122(5):1488-1495. doi: 10.1021/acs.jpca.7b12118. Epub 2018 Jan 30.

Abstract

Although frequently employed, heavy atom kinetic isotope effects (KIE) have not been reported for quantum mechanical tunneling reactions. Here we examine the secondary KIE through 13C-substitution of the carbene atom in methylhydroxycarbene (H3C-C̈-OH) in its [1,2]H-tunneling shift reaction to acetaldehyde (H3C-CHO). Our study employs matrix-isolation IR spectroscopy in various inert gases and quantum chemical computations. Depending on the choice of the matrix host gas, the KIE varies within a range of 1.0 in xenon to 1.4 in neon. A KIE of 1.1 was computed using the Wentzel-Kramers-Brillouin (WKB) CVT/SCT, and instanton approaches for the gas phase at the B3LYP/cc-pVTZ level of theory. Computations with explicit consideration of the noble gas environment indicate that the surrounding atoms influence the tunneling reaction barrier height and width. The tunneling half-lives computed with the WKB approach are in good agreement with the experimental results in the different noble gases.