Climate impact on landslide occurrence and spatial patterns were analyzed within the larch-dominant communities associated with continuous permafrost areas of Central Siberia. We used high resolution satellite imagery (i.e. QuickBird, WorldView) to identify landslide scars over an area of 62000 km2. Landslide occurrence was analyzed with respect to climate variables (air temperature, precipitation, drought index SPEI), and GRACE satellite derived equivalent of water thickness anomalies (EWTA). Landslides were found only on southward facing slopes, and the occurrence of landslides increased exponentially with increasing slope steepness. Lengths of landslides correlated positively with slope steepness. The observed upper elevation limit of landslides tended to coincide with the tree line. Observations revealed landslides occurrence was also found to be strongly correlated with August precipitation (r = 0.81) and drought index (r = 0.7), with June-July-August soil water anomalies (i.e., EWTA, r = 0.68-0.7), and number of thawing days (i.e., a number of days with tmax > 0°C; r = 0.67). A significant increase in the variance of soil water anomalies was observed, indicating that occurrence of landslides may increase even with a stable mean precipitation level. The key-findings of this study are (1) landslides occurrence increased within the permafrost zone of Central Siberia in the beginning of the 21st century; (2) the main cause of increased landslides occurrence are extremes in precipitation and soil water anomalies; and (3) landslides occurrence are strongly dependent on relief features such as southward facing steep slopes.
Keywords: GRACE; landslides; landslides hazard; landslides in permafrost; larch forests; permafrost in Siberia; permafrost melting.