Immune thrombocytopenia (ITP) is an autoimmune disease. Mesenchymal stem cells (MSCs) play important roles in the physiology and homeostasis of the haematopoietic system, including supporting megakaryocytic differentiation from CD34+ haematopoietic progenitor cells. Tumour necrosis factor alpha-induced protein 3 (TNFAIP3, also termed A20) plays a key role in terminating NF-κB signalling. Human genetic studies showed that the polymorphisms of the TNFAIP3 gene may contribute to ITP susceptibility. In this study, we showed a significant decrease in TNFAIP3 and increase in NF-κB/SMAD7 in ITP-MSCs. In co-cultures with CD34+ cells, NF-κB was overexpressed in MSCs from healthy controls (HC-MSCs) after transfection with NFKBIA (IκB)-specific short hairpin (sh)RNAs, resulting in MSC deficiency and a reduction in megakaryocytic differentiation and thrombopoiesis. Knockdown of TNFAIP3 expression using TNFAIP3-specific shRNAs in HC-MSCs affected megakaryocytopoiesis. However, IKBKB knockdown corrected megakaryocytopoiesis inhibition in the ITP-MSCs by decreasing NF-κB expression. Amplified TNFAIP3 expression in ITP-MSCs by TNFAIP3 cDNA can facilitate megakaryocyte differentiation. shRNA-mediated knockdown of SMAD7 expression rescued the impaired MSC function in ITP patients. Therefore, we demonstrate that a pathological reduction in TNFAIP3 levels induced NF-κB/SMAD7 pathway activation, causing a deficiency in MSCs in ITP patients. The ability of ITP-MSCs to support megakaryocytic differentiation and thrombopoiesis of CD34+ cells was impaired.
Keywords: TNFAIP3; NF-κB/SMAD7 pathway; chronic immune thrombocytopenia; mesenchymal stem cells megakaryocytopoiesis.
© 2018 John Wiley & Sons Ltd.