Wooden breast (WB) is a fibrotic myopathy affecting the pectoralis major (p. major) muscle in fast-growing commercial broiler lines. Birds with WB are phenotypically detected by the palpation of a hard p. major muscle. A primary feature of WB is the fibrosis of muscle with the replacement of muscle fibers with extracellular matrix proteins, such as collagen. The ability of a tissue to be pliable and stretch is associated with the organization of collagen fibrils in the connective tissue areas surrounding muscle fiber bundles (perimysium) and around individual muscle fibers (endomysium). The objective of this study was to compare the structure and organization of fibrillar collagen by using transmission electron microscopy in two fast-growing broiler lines (Lines A and B) with incidence of WB to a slower growing broiler Line C with no phenotypically detectable WB. In Line A, the collagen fibrils were tightly packed in a parallel organization, whereas in Line B, the collagen fibrils were randomly aligned. Tightly packed collagen fibrils arranged in parallel are associated with nonpliable collagen that is highly cross-linked. This will lead to a phenotypically hard p. major muscle. In Line C, the fibrillar collagen was sparse in its distribution. Furthermore, the average collagen fibril diameter and banding D-period length were altered in Line A p. major muscles affected with WB. Taken together, these data are suggestive of different fibrotic myopathies beyond just what is classified as WB in fast-growing broiler lines.
Keywords: broiler; collagen; fibrosis; pectoralis major muscle; wooden breast.