Glioblastoma is known to be one of the most lethal and untreatable human tumors. Surgery and radiotherapy in combination with classical alkylating agents such as temozolomide offer little hope to escape a poor prognosis. For these reasons, enormous efforts are currently devoted to refine in vivo and in vitro models with the specific goal of finding new molecular aberrant pathways, suitable to be targeted by a variety of therapeutic approaches, including novel pharmaceutical formulations and immunotherapy strategies. In this review, we will first discuss current molecular classification based on genomic and transcriptomic criteria. Also, the state of the art in current clinical practice for glioblastoma therapy in the light of the recent molecular classification, together with ongoing phases II and III clinical trials, will be described. Finally, new pharmaceutical formulations such as nanoparticles and viral vectors, together with new strategies entailing the use of monoclonal antibodies, vaccines and immunotherapy agents, such as checkpoint inhibitors, will also be discussed.
Keywords: alkylating agents; immunotherapy; monoclonal antibodies; nanoparticles.